
www.pnas.org/cgi/doi/10.1073/pnas.

Supplemental Material for

Indel-correcting DNA barcodes for high-throughput sequencing

John A. Hawkins1,2,3, Stephen K. Jones Jr.2,3, Ilya J. Finkelstein2,3,4,*, and

William H. Press1,3,5,*

1Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, TX 78712,

USA

2Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA

3Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA

4Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA

5Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA

*Correspondence: wpress@cs.utexas.edu, ifinkelstein@cm.utexas.edu

1 Error Correcting Code and Free Divergence Properties

1.1 Minimum error correcting barcode length

An error correcting code which corrects m substitutions, deletions, or insertions must be at least 2m+1

bp long. Proof: Suppose the contrary. Let L ≤ 2m be the length of the barcode. Then by definition

every barcode is at most L substitutions from any other barcode by substituting all of the bases. For any

two barcodes B1 and B2 define Bmid to be the barcode with the first m bases of B1 and the remaining

L−m ≤ m bases of B2. Then Bmid ∈ DecodeSpherem(B1) and Bmid ∈ DecodeSpherem(B2). Since

B1 and B2 were arbitrary, it is thus impossible to have two disjoint decode spheres. Therefore, it is

impossible to have a non-trivial (i.e. more than one barcode) m-error correcting code of length less

than 2m + 1 bp.

1
1802640115

1.2 Calculating FREE divergence

FreeDiv(X,Y) can be efficiently calculated with a modified Needleman-Wunsch algorithm [1], where

the last row and column of the matrix have zero penalty for insertion and deletion corresponding to

right-end fill or truncation respectively.

1.3 Symmetry and minimum paths

FREE divergence is symmetric because any minimum filled/truncated right end edit path (FREE

path) is invertible by inverting all the edits and then inverting the fill/truncation step. Substitutions

are invertible with substitutions, while insertions and deletions are invertible with each other in the

natural way, so edits by themselves are invertible. Invertibility with the fill/truncation step is less

obvious, and requires no edit be truncated off the end. For example, a substitution in the last position

followed by any insertion results in the substitution getting truncated off the end. Minimum FREE

paths never have any edits truncated off the end, because any truncated edit can be omitted to create

a shorter edit path.

Let X and Y be barcodes and let P be any minimum FREE path from X to Y . If P has no

fill or truncation, then the fill/truncation step is trivially invertible by doing nothing. Suppose P

has a fill step which fills f bases at the end. Then starting at Y and inverting the edits results

in exactly those f bases being outside the barcode window, so they are truncated to arrive at X.

Suppose P has a truncation step which truncates t bases. Since P is a minimum edit path, none of

the truncated bases were edited bases, so they are not needed for the inverted edit path starting at Y .

After inverting the edits, t bases need to be filled, which we fill with the last t bases of X. Hence, any

minimum FREE path can be inverted in the same number of edits. Furthermore, since all minimum

FREE paths from X to Y and from Y to X are invertible, FreeDiv(X,Y) ≤ FreeDiv(Y,X) and

FreeDiv(Y,X) ≤ FreeDiv(X,Y). Therefore, FreeDiv(X,Y) = FreeDiv(Y,X) and any inverted

minimum FREE path is itself a minimum FREE path.

1.4 FREE divergence is not a metric

We use the counter-example shown in the right column of Figure 1c. For FreeDiv(TAGA, ACGC),

the modified Needleman-Wunsch algorithm described above produces

2

T

A

G

A



0

A

1

C

2

G

3

C

4

1 1 2 3 4

2 1 2 3 4

3 2 2 2 3

4 3 3 3 3


,

so, from the value in the last row and column, FreeDiv(TAGA, ACGC) = 3. Hence, the following

is a minimum filled/truncated right end edit path (FREE path) between TAGA and ACGC:

TAGA
ins.−−→ TACG |A sub.−−→ TACG |C del.−−→ ACGC

The vertical bars (“ | ”) show the end of the barcode window, though the truncation step would not hap-

pen until after all actual edits. Now, the above FREE path shows that FreeDiv(TAGA, TACG) =

FreeDiv(TACG, ACGC) = 1. But FreeDiv(TAGA, ACGC) = 3, a violation of the triangle

inequality.

We note that this was the error made in the paper defining Sequence-Levenshtein codes [2]. That

code generation technique depends on the Sequence-Levenshtein distance function being a metric,

which it is not.

1.5 Repeated sub-barcode decoding behavior

Using concatenated barcodes consisting of r repeats of a single sub-barcode is a strategy to decrease

decoding error rates. With this strategy, the output is filtered to accept only barcodes in which all sub-

barcodes decode to the same sub-barcode. We here calculate the probability of erroneously accepting

a barcode with errors, as well as the probability of detecting and filtering barcodes with sub-barcode

errors.

Let p be the probability of a sub-barcode decoding error, let r be the number of repeated sub-

barcoces in one concatenated barcode, and let q be the probability that r wrong decodes all decode

to the same wrong sub-barcode. Then, assuming independent errors, the full-barcode decoding error

probability is

P (decoding error) = qpr.

We characterize p throughout this paper, but it remains to calculate q. q, the probability that

3

r wrong decodes all decode to the same wrong sub-barcode, is a function of the effective number of

neighbors of a typical sub-barcode. If the whole space of k-mers were filled with equidistant sub-

barcodes and their decode spheres, then each wrong sub-barcode would be equally likely and q would

be (1
n−1)r−1, where n is the number of sub-barcodes in the library. However, in practice both of those

assumptions are bad. First, the sub-barcode space is not completely filled with decode spheres. Many

decode errors return ‘None’ rather than wrong sub-barcodes, and ‘None’ values are always filtered.

Second, the sub-barcodes are not equidistant. Each sub-barcode has a few neighboring sub-barcodes

whose decode spheres are some minimal number of edits away, and these dominate observed wrong

sub-barcodes. The former effect decreases q relative to the above estimate by increasing filtering, while

the latter effect increases q. In this way, the number of effective neighbors of a typical sub-barcode,

and hence q, depends on the the efficiency of the sphere packing and the size of the space. It also

depends to a lesser degree on the per-base probability of substitutions, insertions, and deletions, in

the same way the effective number of neighbors for a child depends on whether the child is crawling,

walking, or riding a bicycle.

Assuming we intend all barcodes with equal probability, we can write

q = P (r same decode errors | r errors from same intended sub-BC)

=

n∑
i=1

P (r same decode errors | r errors, intended sub-BCi)P (intended sub-BCi)

=
1

n

n∑
i=1

P (r same decode errors | r errors, intended sub-BCi)

where

P (r same decode errors | r errors, intended sub-BCi)

=
∑
j 6=i

P (observed sub-BCj | decoding error, intended sub-BCi)
r.

This expression we estimate through direct simulation: randomly selecting intended barcodes, adding

errors, and decoding. We estimate q, the average, by subsampling intended sub-barcodes. Estimates

for q over a range of barcode lengths, per-base error levels, and numbers of repeats are shown in Figure

S8.

The probability of filtering a barcode due to sub-barcode errors is the probability of any error

4

decoding any sub-barcode except for the previous case where all sub-barcodes decode to the same

other sub-barcode. This is given by

P (filtered barcode) = 1− P (correct decode)− P (decoding error)

= 1− (1− p)r − qpr

For all expected use cases, p is small and r is a small integer, so the first-order approximation of this

expression is a good one, given by:

P (filtered barcode) = rp.

2 Barcode Generation

2.1 Sphere iterator

Central to our generation and decoding algorithms is the ability to deterministically iterate over

decode and encode spheres. Recursive iteration is far too slow for practical use due to redundancy.

For example, attempting to find DecodeSphere2(B) by finding DecodeSphere1(W) of all words W in

DecodeSphere1(B) results in iterating over each 2-error word at least twice, by switching the order of

added edits. As the number of edits, m, grows, the redundancy grows as m! due to edit permutations.

So, to iterate over a sphere centered at barcode B, we instead built a method to iterate over all

words at a given FREE divergence d from B and then iterate over d as needed. We additionally

exploit the following identities regarding substitution (sub), insertion (ins), and deletion (del) edits to

optimize iteration: sub-del = del, ins-del = del-ins = sub, ins-sub = sub-ins, and in the last position,

ins = del = sub. Note that use of these identities assumes we are only interested in solid spheres, so

will for example iterate over a sequence at divergence d with an ins-del sequence during the previous

d− 1 divergence sphere with a sub.

2.2 Use of encode spheres

The algorithm used for efficient code generation relies on the fact that if a word W is in EncodeSphere(B),

then DecodeSphere(B) and DecodeSphere(W) overlap. That is, there exists a word U such that U ∈

DecodeSphere(B) and U ∈ DecodeSphere(W). Let W ∈ EncodeSphere(B). If W ∈ DecodeSphere(B),

5

then U = W and by symmetry we are done. Suppose W 6∈ EncodeSphere(B). By the definition of

encode spheres, there exists a filled/truncated right end edit path (FREE path) with at most 2m edits

from B to W . Let U be the filled or truncated sequence m edits along this path from B. With this

choice, FreeDiv(B,U) ≤ m, where the less than or equal sign is in case of any fill/truncation effects.

Furthermore, there are at most m more edits along the path to W by choosing the fill or truncation for

word U to allow use of the same FREE path to W . Then, by use of symmetry, FreeDiv(W,U) ≤ m,

and we are done.

2.3 Code efficiency

Code efficiency is measured, where possible, in terms of a code rate, defined as the number of usable

“message” bits that can be encoded in a single barcode divided by the actual number of bits in

the sent barcode. In many standard codes, k message bits have r bits added for error correction,

giving a code rate of k/(k + r). For n-mer barcodes, each sent base is two bits of information, so

the denominator is 2n. The numerator is the effective number of message bits: the length of the

largest binary number smaller than the number of barcodes, given by blog2(Number of barcodes)c.

However, for our purposes the number of message bits does not need to be an integer, so we will refer

to the previous as the actual message bits, while we are more interested in the “raw” message bits:

log2(Number of barcodes) without a floor function. These correspond to raw and actual code rates,

shown in Figure S1.

The code rate of FREE codes increases with barcode length, and appears to asymptotically ap-

proach a maximal code rate determined by the properties of the decode sphere packing. We observe

in Fig. 2b that after some boundary effects at short barcode lengths, the number of raw message bits

(log of the number of barcodes) increases linearly with the length of the barcodes. The slope of this

line, up to a factor of 2 for the x-axis due to using base-4 instead of base-2, is an empirical estimate for

the asymptotic code rate—message bits over sent bits—for our packing method. We show estimated

asymptotic values for our single- and double-error correcting codes as dashed lines in Figure S1c.

2.4 Generating Linear Hamming Codes

Generating a linear Hamming code for DNA strings of length n encoding raw messages of length k

and which corrects up to e errors is equivalent to finding a parity check matrix H = (−PT | In−k)

over Galois field F4 such that any subset of 2e columns is linearly independent [3]. Given such a

6

matrix H, all barcodes can be expressed as mG, where m is any raw message vector of length k and

G is the generation matrix G = (Ik |P). We found matrices P1 and P2, corresponding to single- and

double-error correcting linear Hamming codes, via lexicographical search through possible columns

of H, accepting new columns if they were linearly independent from all previous subsets of 2e − 1

columns. We found such P matrices for k up to length 100. The submatrices corresponding to codes

up to length 14, as used in Figure 2e, are given by

P1 =



0 1 1

0 1 2

0 1 3

1 0 1

1 0 2

1 0 3

1 1 0

1 1 1

1 1 2

1 1 3

1 2 0



, P2 =



0 0 1 1 1 1

0 1 0 1 1 2

0 1 1 0 2 1

0 1 1 2 1 0

0 1 2 1 0 1

1 0 0 1 1 3

1 0 1 0 2 3

1 0 1 2 3 1



.

3 Experimental Validation

3.1 Primer processing

Primers were used both chemically for library amplification and informatically to distinguish left from

right sides. However, the possibility of insertions and/or deletions in these primer sites introduced

some uncertainty in the starting position of the DNA barcodes. To address this, we wrote a cus-

tom adaptation of the Smith-Waterman algorithm for overhanging sequences. The user specifies an

expected primer sequence, a full-length observed read, and a maximum allowable number of errors,

which we chose to be 2 for both the left (19 bp) and right (18 bp) primers. Using the modified Smith-

Waterman algorithm with unity penalties for all error types, we identified the highest scoring prefix

of the observed sequence which matches the expected sequence. If two or more possible lengths had

the same score, we chose the one closest to the expected length. If the number of edits is less than or

7

equal to 2, this best inferred length then determines the position to be used as the start of the barcode

sequence.

3.2 Experimental decode errors

Decode errors are detected by whether or not the left and right barcodes, as shown in Figure 3a,

match an intended left/right barcode pair. There are two possible ways to decode incorrectly: either

by decoding to a wrong barcode or by decoding to “None” if the observed barcode is not in any

decode sphere at all. If a barcode decodes to “None”, then that decode is obviously an error. If a

barcode decodes to an incorrect barcode, then the observed output is that the left and right barcodes

mismatch but it is unclear which is actually the decode error. We determine which barcode is in

error by measuring the edit distance of the entire oligo against the two possible intended sequences,

accepting the one with lowest edit distance. To measure the 0- and 1-Error correction data in Figure

5, we then measured the edit distance of each observed barcode to the intended barcode using the

primer processing algorithm described above.

This analysis resulted in the detection of chimera oligos, oligos with the left side of one intended

oligo and the right side of another. Most of the barcodes which decoded to wrong barcodes matched

the wrong barcode with zero errors, which was very unexpected. The decode spheres for 17-mer,

2-error correcting codes contain ∼104 barcodes, of which ∼102 are 1-error away and exactly 1 is the

0-error wrong barcode (Fig. S1a). Furthermore, the wrong barcode with zero errors is the center

word, furthest from the sphere boundary and other barcodes. Thus, seeing a barcode decode to a

wrong barcode with zero errors should be vanishingly rare compared with 1 and 2 errors. These

together imply that we are not observing random errors. We instead appear to be generating chimera

oligos. This is likely explained by degeneracy in the spacer region: the spacers are all different, but

have stretches of identical sequences around 20 bp long. Incomplete PCR products could then act as

primers for this sequence in later rounds of PCR, creating chimera sequences. To correct for these

chimeras, we conservatively assumed the distribution of the number of errors in chimera barcodes

is the same as that for correct barcodes, though it is likely higher. The observed number of wrong

barcodes with zero errors was 9,628, the approximate size of a decode sphere, so we accepted that as an

approximation for how many chimera oligos had barcodes with zero errors. We then used this number

and the distribution of correct barcode errors to approximate how many of the wrong barcodes 1-error

and 2-errors away from the wrong barcode were chimera oligos. The 0-, 1-, and 2-error correct barcode

8

counts on the left were 1,258,928, 104,892, and 9,129 on the left and 1,205,545, 140,566, and 18,007 on

the right. The wrong barcodes with zero errors were attributed to the two sides proportional to the

total wrong barcodes found on each side. This resulted in 0-, 1-, and 2-error inferred chimera barcode

counts of 2,078, 173, and 15 on the left and 7,550, 880, and 113 on the right. These were then omitted.

3.3 Decode error rate model

The decoding error rate of an m-error correction code is the probability of seeing more than m errors

in a given barcode. For error analysis, we model each barcode as a queue of intended bases. At each

read position, an intended base is popped off the queue and attempted to be added. One of four things

will happen: 1) the correct base will be added, 2) an incorrect base will be added, 3) the base will

be deleted, or 4) another base will be inserted and the intended base will go back to the top of the

queue. The first three options do not return the base to the queue, resulting in the same structure of

expected output 7→ observed output. However, insertions cause the intended base to return to the top

of the queue, and the output was never expected in the first place. For this reason, it must be modeled

differently from the other three. Assuming independent errors of all types and positions, we model

insertions with a negative binomial distribution and the correct bases, deletions, and substitutions

with a multinomial distribution, using our measured error rates per reference base, shown in Figure 3.

Let a barcode be given and let B be the 1-by-4 row vector with counts of each of the bases ACGT in

the given barcode. Let I be the 1-by-4 row vector of insertion counts for each of the four bases. Further,

let CDS be the 3-by-4 matrix with columns corresponding to the DNA bases, and rows corresponding

to all non-insertion outputs: correct bases, deletions, and substitutions. We will occasionally refer

to the rows of CDS individually as C, D, and S, but we leave it in matrix form as they are tightly

connected. In fact, it must be true that C + D + S = B.

We use the measured error rates given reference base shown in Figure 3. Insertion and deletion

rates, pi(b) and pd(b), are taken directly from synthesis error rate measurements. Substitution rates,

ps(b), are calculated as the probability of not observing the event {no synthesis substitution and

no sequencing substitution} nor the event {synthesis substitution to another base c and correcting

synthesis substitution back to b}, and are thus given by

ps(b) = 1− (1− ps,synth(b))(1− ps,seq(b)) −
∑

c∈{ACGT}
c6=b

1

3
ps,synth(b) · 1

3
ps,seq(c)

9

Now let pc(b) = 1 − pd(b) − ps(b) be the probability of correctly adding a base, let N be the random

variable for the total number of errors, let nerr be given, and let ni, nd, and ns be the number of

insertions, deletions, and substitutions respectively. Then, from our assumption of independent error

rates given reference base, we get for each reference base the previously mentioned negative binomial

distribution for insertions and multinomial distribution for the rest:

p(N = nerr |B) =
∑

CDS with nd,ns
I with ni

nd+ns+ni=nerr

∏
b∈{ACGT}

[(
Ib + Bb − 1

Ib

)
(1− pi(b))

Bb pi(b)
Ib

×
(

Bb

Cb + Db + Sb

)
pc(b)

Cbpd(b)Dbps(b)
Sb

]

Finally, we marginalize the above over barcode identity,

p(N = nerr) =
∑

B∈Barcodes

p(N = nerr |B) p(B)

and sum over nerr as required.

3.4 Maximum error run lengths

The error models used in this paper, both the simpler binomial model and that derived above, assume

independent errors at each position, understanding that this is an oversimplification. A quick way

to see that the errors in our experimental data are definitely not independent and to show why this

impacts our work directly is to check the distribution of maximum error run lengths, i.e., the maximum

number of consecutive errors in a given oligo. We consider the binomial model where each position

is either an error with probability p or correct with probability q = 1 − p. We wish to know the

probability that in a sequence of length n the maximum run of errors will be r bases long. This is a

well-studied problem, and we use Simpson’s solution as presented by Hald [4]. Briefly, let Zn be the

probability that the maximum run of errors in a sequence of length n is at least r bases long and let

zn be the probability that the first run of r errors ends at the nth position. Then

Zn = z1 + z2 + · · ·+ zn.

10

For n < r, Zn = zn = 0 trivially, since there are not enough bases, and for n = r, Zn = zn = pr since

they must all be errors. For n > r,

zn = (1− Zn−r−1)qpr

by definition of zn, since this is the probability that no run of length ≥ r in the first n− r − 1 bases,

then there is a correct base followed by r errors. One can then recursively find Zcr+i for increasing c,

resulting in the general formula

Zn =

bn−1/rc∑
c=1

(−1)c+1

[
pr
(
n− cr

c− 1

)
(qpr)c−1 +

(
n− cr

c

)
(qpr)c

]
.

Finally, for fixed n and p, P(maximum run length = r) = Zn(r)−Zn(r+ 1), shown in Figure S7 using

our oligo length, n = 116, and measured probability of error, p = 0.005 (Fig. 3). Our experimental

data are similar to this model for maximum runs of zero and one errors, but deviate significantly for

maximum runs of more than one error because our errors are not, in fact, independent. This helps

explain the deviation of our experimental barcode decoding error rates from the model predictions in

Figure 5, since our experimental errors clump together, increasing the probability of having more than

two, say, in a single barcode.

References

[1] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–

453, March 1970.

[2] Tilo Buschmann and Leonid V. Bystrykh. Levenshtein error-correcting barcodes for multiplexed

DNA sequencing. BMC Bioinformatics, 14:272, September 2013.

[3] W. Cary Huffman and Vera Pless. Fundamentals of Error-Correcting Codes. Cambridge University

Press, February 2010.

[4] Anders Hald. A History of Probability and Statistics and Their Applications Before 1750. John

Wiley & Sons, September 2003.

11

Barcode Length 1-Error Correction 2-Error Correction
3 2 -
4 3 -
5 10 2
6 27 2
7 67 4
8 213 7
9 554 12
10 1,903 31
11 6,161 75
12 17,214 179
13 56,736 468
14 157,197 1,156
15 518,509 3,183
16 1,636,418 8,777
17 - 23,025

Table S1: Numbers of FREE barcodes. Number of FREE barcodes for each barcode set included
with this paper, by barcode length and number of errors corrected.

12

c
1 Error, Raw

1 Error, Actual

1 Error, Asymp.

2 Error, Raw

2 Error, Actual

2 Error, Asymp.

b

(FREE)

(FREE)

F
R

E
E

 D
e

c
o

d
e

 S
p

h
e

re
 V

o
lu

m
e

a

Figure S1: Decode sphere volumes and code efficiency. a. Unlike Hamming decode spheres,
FREE divergence decode spheres do not have uniform volume due to degeneracy of insertions and
deletions. For example, the sequence AACT only has three unique deletions because a deletion of
either A generates the same resulting sequence. Sphere volumes of 1- and 2-error codes are shown
for all words and for only valid code words after our FREE code synthesis and sequencing filters (no
homopolymer runs, no triplet complementarity, etc.). Black lines explained in (b). b. Optimal sphere
packing bounds. The optimal packing for an error-correcting code is not known in general. Typical
code generating algorithms, including ours, are instead heuristics for finding relatively good codes.
For reference, one can usually find a (typically impossible) upper bound on the maximum number of
code words by calculating the volume of the space divided by the volume of a single decode sphere.
As shown in (a), the volumes of FREE divergence decode spheres are not uniform, so we instead find
the volume of every sphere in the space, sort them, and find the minimum number of barcodes at
which the cumulative sum of barcode sphere volumes is smaller than the space. We show the upper
bound calculated for valid code words. The volume at which that happens for each code is shown in
(a) as black lines. The lower bound is the best efficiency achieved by any code generation method
to date, which for FREE codes is simply the number of barcodes reported in this paper. The actual
maximum possible number of barcodes is somewhere between the two. c. Raw and actual code rates
for each FREE barcode set included with this paper as well as the asymptotic values they approach,
as described in the Supplemental Materials.

13

b

P(error per base) P(error per base)

P
(d

e
c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)

P
(d

e
c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)

a

Figure S2: Error rate simulations by error type. a-b. The simulations performed for Figure 4,
repeated for each error type—substitutions, deletions, insertions—individually. Shown for length (a) 8
and (b) 16 barcodes. Barcode sets are labeled according to length and number of errors corrected; for
example, the 16-2 code is length 16 and corrects up to 2 errors. Mismatches follow the binomial ap-
proximation closely, while deletions and especially insertions perform slightly better than the binomial
approximation.

14

P(error per base) P(error per base) P(error per base)

P
(d

e
c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)

Figure S3: Error rate comparison with constant barcode length. The binomial approximation
of the decode error rate as a function of the error rate per base, grouped by given barcode length.

15

P(error per base)

P
(d

e
c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)

Length 17

Length 16

Length 17

Length 5

Length 3

Length 3

Figure S4: Error rate comparison with constant barcode number of errors corrected. The
binomial approximation of the decode error rate as a function of the error rate per base, grouped by
given number of errors corrected.

16

P(error per base)

P(error per base) P(error per base)

P
(d

e
c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)
P

(d
e

c
o

d
in

g
 e

rr
o

r)

Figure S5: Error rate comparison with constant number of barcodes. The binomial ap-
proximation of the decode error rate as a function of the error rate per base, grouped by number of
barcodes. Numbers of barcodes were not precisely equal. Rather, each panel starts with the number
of 2-error correcting barcodes and uses the smallest 0- and 1-error correcting barcode sets with at least
as many barcodes.

17

Oligo Coverage

O
lig

o
 C

o
u

n
t

Figure S6: Coverage. Coverage histogram and statistics for the FREE code validation experiment.
Each of the 8,684 oligos was observed with average coverage of 159x.

18

P
ro
b
a
b
ili
ty

Figure S7: Maximum error run length probabilities. The probability distribution of maximum
consecutive-error run lengths from a model assuming independent errors (Supplemental Materials) and
from our data. The two differ significantly because errors in our data are not independent.

19

c

P
(d

e
c
o

d
in

g
 e

rr
o

r)

P(error per base)

b

P(error per base) P(error per base)

a

Figure S8: Repeated, concatenated sub-barcode behavior. a. Example values of
P (observed sub-BCj | decoding error, intended sub-BCi) for sub-BCi’s from the 1- and 2-error cor-
recting codes of length 10 across a range of per-base error rates. Individual lines represent different
sub-BCj ’s. b. Estimated values for q from direct simulation. perr = P (error per base). Error bars
give the S.E.M., shown only for perr = 0.01. c. Decoding error probabilities for repeated, concate-
nated sub-barcodes after filtering mismatching decoded sub-barcodes. The value of q was taken as
that estimated for perr = 0.01, since perr is observed above to have a relatively small effect on q except
in a few cases where perr = 0.01 gives the most conservative estimate of q. Code label format example:
2x(10-1) is 2 repeated sub-barcodes of length 10 and 1-error correction.

20

Figure S9: Hairpin melting temperatures. Hairpin melting temperature CDFs are shown for
all barcodes libraries included with this manuscript. The barcodes included here nearly all have
Tm < 60◦C, and users can further filter the barcode sets to avoid hairpins in their specific experimental
conditions. The calculated Tm of each barcode is included in the Supplemental Data.

21

